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Introduction

Since 6.2, FMESH has undergone a substantial revision in capabilities.
I The default FMESH configuration was heavily optimized.
I 3 new tally backends were added for various needs (mainly, larger tallies).
I MESHTAL is deprecated and replaced with an HDF5 + XDMF output

format.
(This format allows for much faster and easier postprocessing and
analysis)
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Tally Algorithms

It started as a side project - can we use MPI remote memory access to scale
further than ever before?
I needed a point of comparison, so I implemented 4 algorithms:
I History - basic history statistics without optimization.
I Fast History - a tuned version of 6.2’s FMESH algorithm, tracks changed

indices to reduce memory bandwidth usage.
I Batch - Threads share a tally array, so memory usage is reduced.
I Batch RMA - The Batch algorithm, but using MPI-3 RMA to distribute

tallies over all MPI ranks.
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History Algorithm
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Every thread has a full score array.
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Fast History Algorithm
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Batch Algorithm
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Batch RMA Algorithm
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Slide 8 of 19

Infrastructure Changes

The MCNP code didn’t support batch statistics in any way. A number of changes
had to be made:
I NPS now has a batch size option.
I When any batch tallies are enabled, KCODE will resample the fission bank

to a fixed size.

This means the RNG sequence will change if batch tallies are added!
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Performance

I Tested on a k-eigenvalue problem with a 10-cm, 10-g/cc ball of 235U.
I Maximizes the effect of tally performance on the problem.
I Mesh was scaled from 50 × 50 × 50 to 1600 × 1600 × 1600
I Neutrons/hr and memory usage tallied
I Tested on 6 nodes of a cluster with 2 sockets, 18 cores each, 128 GB

memory.
I Ran combinations of MPI, OpenMP.

Note: OpenMPI 3.1.6 + Omni-Path does not support MPI_THREAD_MULTIPLE, so
threading performance is poor for Batch RMA.
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Performance
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Performance
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Memory
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Batch RMA has high overhead that dissipates for large problems.
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Memory
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File Formats

Previous versions of the MCNP code used the MESHTAL format:
I ASCII output results in large file sizes.
I The binary to ASCII conversion was generally slow.
I It is tricky to bring into other tools (needs a processing script).

Version 6.3 uses HDF5 + XDMF:
I Binary file format for smaller sizes and faster IO.
I Trivial to load into ParaView, VisIt1, Python, etc.
I (Optional) parallel HDF5 for even faster performance.

1 Note that VisIt uses HDF5 1.8 at the time of this writing. MCNP outputs files that use the 1.10
format. Future versions of VisIt will use 1.10+. For now, h5repack can be used to convert to a 1.8
file.
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File IO Performance

216 million cell mesh, Lustre filesystem, 8 stripes, 1M stripe size, 8 MPI Ranks:

Method Time (s) File Size
MESHTAL 617.5 12 GB

HDF5 + XDMF 18.1 3.2 GB (in runtape)
Parallel HDF5 + XDMF 7.5 3.2 GB (in runtape)
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ParaView Example

Make sure to open with “XDMF Reader”, which is the reader for XDMF version 2
files.
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ParaView Example - Point Source on Cube Corner
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Python Example

Listing 1: Python 3.6+ Example for Reading FMESH
1 import h5py
2 import numpy
3
4 def read_fmesh(filename , tally_id):
5 with h5py.File(filename , ’r’) as handle:
6 group = handle[f"/results/mesh_tally/mesh_tally_{tally_id}"]
7
8 data = {}
9 # Transpose converts indices to x, y, z, e, t

10 data["mean"] = numpy.transpose(group["mean"][()])
11 data["relative_standard_error"] = \
12 numpy.transpose(group["relative_standard_error"][()])
13 data["grid_x"] = group["grid_x"][()]
14 data["grid_y"] = group["grid_y"][()]
15 data["grid_z"] = group["grid_z"][()]
16 data["grid_energy"] = group["grid_energy"][()]
17 data["grid_time"] = group["grid_time"][()]
18
19 return data
20
21 data = read_fmesh("runtpe.h5", 4)

By slicing group[“mean”] instead of using [()], one can load a portion into
memory without loading all of it.
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Summary

I New FMESH outperforms 6.2’s in most workloads.
I New modes allow for much lower memory usage for large problems.
I File formats are fast and easy to work with.
In the future, we expect to extend this capability to more parts of the MCNP code.


